Evaluation Implementation Of Feasibility Policy
Railway Rolling Stock

Rustamiaji Jatmiko
1Institut Transportasi dan Logistik Trisakti, Jakarta, Indonesia
*Corresponding Author: rustamiaji@gmail.com

Abstract

The objective of the research is to evaluate policy implementation of feasibility railway rolling stock at Subdit Kelaikan Sarana Wilayah II (Sumatera). The research used qualitative method with descriptive design. Data collection is done through interview, observation and documentation. The informants are 11 people. Data analysis using Miles and Huberman analysis model. The result of the research shows that the policy implementation of feasibility railway rolling stock has not gone well. Input, process and output are not yet adequate, both in quantity and quality. The obstacles are inadequate human resources in quantity and quality, SOPs has not been fully implemented, infrastructure and facilities are inadequate, the use of budget is not right target and not according to planning because of the savings/budget cuts. For that we need a comprehensive strategy in the form of provision of joint testing place where the treatment; addition of testing equipment; addition of human resources of examiners and administrators; improving the quality of human resources; addition of update technology; adequate budget; making SOP according to field condition; streamlining the testing and certification process effectively and efficiently; conduct monitoring and evaluation; private submission as a government accredited testing agency; facilities and infrastructure based on technology and information systems online.

Keywords: evaluation, implementation, policy, goodness, train

Introduction

Train transportation that serves public transportation and goods must be safe in operation. So that in the implementation of rail transport can be obtained transportation services with a level of safety, security, smoothness and high comfort, the operated railway rolling stock must have reliability and meet safety requirements so that the railway rolling stock are always in a ready-to-use condition and technically feasible to operate Therefore, the provision and construction of railway rolling stock must be based on the requirements that have been determined and carried out testing, inspection, maintenance or maintenance,
and certification. Operation of railway rolling stock needs to be tested, examined, maintained and certified. The existence of demands from consumers for improving aspects of the train's operational comfort and safety requires more attention from operators to maintain the railway rolling stock that they operate with the variety of technologies used. Inspection and maintenance are principally carried out by the railway facility operator, while railway facility testing and certification is carried out by the government and can be delegated to Legal Entities or Institutions that are accredited by the government.

Evaluation is a crucial stage of policy, so that the term evaluation can be paired with the term appraisal, rating or assessment, words stating an attempt to analyze policy results in terms of its unit value. In a more specific sense, evaluation relates to the production of information about the value or policy of the benefits of policy outcomes. The definition of evaluation can be translated through three meanings, namely: (a) initial evaluation, namely from the policy formulation process to the time before it is implemented (ex-ante evaluation); (b) evaluation in the implementation or monitoring process; (c) the final evaluation is carried out after the policy implementation process (ex-post evaluation) is completed (Dunn, in Abidin, 2012: 152).

Abidin (2012: 147) explained that the implementation process is related to two main factors, namely the main internal factors and external main factors. The main internal factors include policies that will be implemented and supporting factors. Meanwhile, external factors include environmental conditions and related parties. On the other hand, Gow and Mors (in Keban, 2008: 78) mentioned several obstacles in the implementation of policies, namely: (1) inability of HR in the technical and administrative fields; (2) lack of technical assistance; (3) institutional weaknesses; (4) political, economic and environmental barriers; (5) lack of decentralization and participation; (6) timing (timing); (7) information systems that are less supportive; (8) differences in the objectives agenda between actors, and (9) support.
Feasibility has one meaning, so that feasibility according to the railroad can be interpreted as the feasibility of railroad facility operations in accordance with the contents of Government Regulation No.56 of 2009 in paragraph 3 Operation of railway rolling stock Article 198 paragraph 2 feasibility of railroad facility operations must be carried out testing and inspection of railway rolling stock.

Railway Rolling Stock is a railroad component that can move or move which is a means of production to produce railroad transport services with movement power, either walking alone or coupled with other railroad facilities, which will or are moving on railways associated with railroad travel.

From the description above, it can be synthesized that the feasibility of railway rolling stock is the compatibility between the conditions and functions of the railway rolling stock with technical requirements and technical specifications, with indicators: inspection and testing processes.

Method

This research uses a qualitative research method with descriptive design which is a research model with inductive thinking techniques, making humans (researchers) as the main instrument of research and carried out with qualitative data collection.

The evaluation model used is the gap evaluation model, which seeks to see whether the implementation / implementation of the policy is in accordance with the standards (criteria / size) mandated by Law No. 23 of 2007 concerning Railways and government regulation No. 56 of 2009 concerning the Implementation of Railways in the Sub-District Feasibility Facility II Subdit, so that there can be known gaps or gaps between standards / criteria with policy implementation.

Research also emphasizes objectivity and honesty that is realized by explaining the research objectives to informants. Besides the identity of the informant as the executor of the policy, so the results of this research have an impact on the realization in the field. Data and information used in this research
were obtained from observations and interviews, in the form of direct observation, interview notes, and photos of activities.

This research involved 11 informants consisting of 8 (eight) key informants and 3 ordinary informants. Key informants are people who know, understand and are directly involved in railroad infrastructure feasibility activities. While ordinary informants are people who know and understand but are not directly involved in railway rolling stock feasibility activities.

Data analysis method used in this research qualitative data analysis using the analysis model of Miles and Huberman (2007: 8-12), which includes: data reduction (data reduction), data display (data display), and conclusion / verification (conclusion drawing / verification).

Discussion and Result

The findings of the research regarding the evaluation of the implementation of railway rolling stock feasibility policies found three important things, namely: policy implementation, obstacles that arise, and strategies that are relied upon to overcome these constraints.

The first finding was related to policy implementation, including: input, process and output.

1. Input of policies, related to HR, inadequate quantity, lack of testing staff, administrative HR and others; as well as the quality is also inadequate, lack of testing personnel; the administration still uses the manual, has not used the application / program in issuing the feasibility certificate; training / training for competency improvement; educational background; introduction and development as well as the implementation of the testing of the new railway rolling stock technology applied in Indonesia such as: LRT, MRT, Fast Train, Metro Capsule. Regarding the quantity and quality of infrastructure and facilities, it is also inadequate. Quantitatively, additional infrastructure and facilities are needed such as testing equipment. In terms of quality of infrastructure, lack of testing equipment room, place of testing
staff, room for issuance of feasibility certificates. The quality of facilities is also not good, namely the lack of additional quality of testing equipment, computer issuance of feasibility certificates, technological advances, calibration (accuracy). Whereas for the use of the budget is good, adequate and efficient. While the SOP procedures for testing the feasibility of facilities as a guide to carry out a railway facility feasibility test use the procedures for testing in the Minister of Transportation Regulation and SOPs at Balai Yasa and Depo.

2. The implementation process, is good enough but not sufficient (less optimal), because it is still focused on one sub directorate while the testing staff is in another directorate and lack of testing staff so that not all facilities scattered in various Yasa Centers and Depos can be tested. Utilization of infrastructure and facilities does not yet exist, for example for infrastructure such as testing sites not yet available, the test site still uses the property of the facility operator (PT. KAI), and there are some that have not been used because they are still manual which results in too long processing. For facilities, such as the use of testing equipment in the application is not yet maximal and limited, such as new technology, calibration (accuracy), easy and reliable test equipment, tools and tools for issuing feasibility certificates. While the utilization of the budget is good and has been maximized. While the SOP is not in accordance with the conditions in the field, so it cannot be implemented as a whole.

3. Policy output, trains that have been tested for their feasibility are still far from expectations. This is not in accordance with the applicable quality standards, because there are still facilities that have not passed the feasibility test, between the absorption of the budget is not comparable to the output of activities and conditions in the field; many facilities that are due due to the implementation of the test after treatment has been carried out operation; not all testing can be carried out due to limited space and facilities; lack of socialization by the government and the providers of facilities; and
implementation of feasibility has not been carried out according to the rules. Quantitatively, the target has not been met, because many facilities do not have a health certificate. Railway rolling stock from a small number of villages are still being tested periodically, due to operational needs. Comparison of the number of human resources and the number of trains tested which are not balanced and the organization is less supportive of achieving the target so that there is a shortage of HR testing personnel and HR issuance facilities for railway rolling stock; and SOPs are still not fully implemented.

The second finding, related to the constraints of policy implementation is still found the constraints of policy implementation which include: inputs and processes.

1. Input policies: (a) inadequate quantity and quality of human resources, which is reflected in the shortage of testing personnel, administration of railway rolling stock feasibility issues, no certification, and lack of attention to educational background; infrastructure and facilities lacking standards, quantity and quality of equipment (testing the need for calibration), static and dynamic testing sites, room for issuance of feasibility certificates, computers, printers, application for issuance of feasibility certificates; and (b) SOPs for testing the feasibility of facilities are still constrained in the implementation of the field due to lack of testing supporting facilities and infrastructure, so that the process of conducting testing is still dependent on the operator / owner of the train in terms of testing and testing time.

2. The policy process: (a) the amount of human resources is insufficient so that the examiner does what is not the task and function; the quality of the testing staff is still lacking in the implementation of testing and the special human resources for organizing the facilities, equipment and work safety are not available; (b) infrastructure and facilities, testing equipment is still lacking and not all are calibrated and the place of testing joins with the cross and mobilization of testing equipment that must be carried out when conducting
testing; (c) the budget for its use is not right on target and often the conditions used as the basis for budgeting experience a development / change that is much different than planned, namely savings / budget cuts.

The third finding, related to the strategy for implementing the railway rolling stock feasibility policy includes comprehensive input, dam processes.

1. Input policy: (a) HR, testing personnel are placed and ready at all Yasa Centers and Depos of the railway operator PT. KAI to carry out testing tasks; provide training to employees who do not yet have a certificate of testing personnel and training in developing testing technology; the existence of a new policy to overcome the shortage of testers; changes in organizational patterns that accommodate HR examiners; and cooperating with other agencies in recruitment in the regions so that they are more efficient; (b) infrastructure and facilities, providing infrastructure at each location of the Balai Yasa and Depo the operator of the railway rolling stock PT. KAI with adequate quantity and quality complete with a set of test equipment to facilitate the task of examiners with the latest technology; (c) budget, effective and efficient use of the budget through budget adjustments in each region taking into account the needs of each region, not savings / budget cuts. Fulfillment of infrastructure and facilities allocated from PNBP revenue from the Directorate General of Railways; and (d) SOPs, making SOPs for each railway facility operator PT. KAI that can be used as a work guide for testing and certification of facilities; revision and addition of Ministerial Regulation in accordance with practice and care in the field; simplify testing SOP without reducing the assessed safety aspects; periodic implementation evaluation; look for literature as a reference for conducting testing; SOPs are adjusted to conditions on the ground; making SOPs between DJKA and PT. KAI together.

2. Policy process: (a) HR, testing personnel coordinate and communicate in conducting facility feasibility tests in the field with the railway facility operator PT. KAI; make employees at Balai Yasa and Depo as testers;
increasing the competence of testing staff regularly; additional testing staff to be placed in each region in accordance with the number of railway rolling stock in each region; testing staff and PT. KAI jointly conducts quality control in conducting testing; (b) infrastructure and facilities, using testing sites and testing equipment that have better technology in the process at each Yasa Hall and Depo; guarantee the quantity and quality through periodic maintenance and calibration; the test is carried out by an institution that has been accredited by the government in accordance with the applicable regulations; utilize existing tools; effective and easy infrastructure and facilities in the process; placing testing equipment that has the latest technology in each region; (c) budget, using the budget in accordance with the optimal testing allotment and in the payment of test items that have been tested by looking at the data so that there are no double payments; no savings / budget cuts; and effective and efficient budget utilization; and (d) SOPs, make SOPs between the government and the railway facility operator PT. KAI according to the conditions in the field; carry out in accordance with SOP in the field and socialization of UPT in the area of the yasa and depot by the railway operator PT. KAI; revise and add RPM; and supervise the implementation of SOPs and ongoing evaluation.

Conclusion

Evaluation The implementation of the railway facility feasibility policy in the Sub-Directorate of Feasibility Facility II (Sumatra) has not gone well. Seen from the aspect of input, process and output is not sufficient. This indicates the empirical fact that the Ministry of Transportation as a regulator and at the same time implementing the railway rolling stock feasibility testing has not been able to play a good role in carrying out the task of railway rolling stock testing, at least in the Sub-Directorate of Feasibility Facility II (Sumatra). In fact, the railway rolling stock feasibility test is vital for the operational performance of trains, including in ensuring safety and avoiding accidents. The role of the Ministry of Transportation
of the Republic of Indonesia as a regulator and the implementer of railway rolling stock feasibility testing has not been maximized, which among others is to immediately improve the performance of railway rolling stock. In addition, the Ministry of Transportation of Indonesia has also not fully been able to support its own policies, namely providing input and processes for the implementation of adequate railway rolling stock feasibility policies, including in Region II (Sumatra). This condition, among others, provides an opportunity for PT KAI to not fully pay attention to the facilities owned. As shown by the results of the research by Pramyastiwi, Hardjanto, and Said (2010: 61) that the facilities and capacity of Balai Yasa are limited so that facilities are delayed. Lack of infrastructure support has a negative impact on the operation of trains and passenger comfort so that they can continue to function and ensure the safety and smooth operation of railroad transportation. This shows that both the Ministry of Transportation of the Republic of Indonesia as a regulator and testers for the feasibility of railroad facilities and PT KAI as train operators have not been optimal in maintaining the railway rolling stock properly and adequately.

Such conditions are the role of the government in achieving the success of the goal is considered very important, because the government has the role of providing infrastructure facilities evaluation of railroad policy and control of railroad policy. This is an analysis of the results of research by Ayuningputri, Santoso, and Lituhayu (2012) which shows that the coordination between the Government and PT. KAI (Persero) which is not good makes the implementation of railways to be less in line with what is expected by the policy target, namely the train user community.

This condition requires serious attention, not only by the Ministry of Transportation of the Republic of Indonesia as a regulator and examiner of railway rolling stock feasibility but also PT KAI as a train operator. This means that the railway rolling stock need to be properly maintained because they have a serious impact on the operational performance of the train and ensure the safety of passengers / cargo.
Based on the above conclusions, to improve the implementation of the railway rolling stock feasibility policy on the Sub-Directorate of Eligibility for Regional Facilities II (Sumatra), the following recommendations are recommended:

1) HR should be done by increasing the number of examiners and administrative staff and others by 80% to be placed in each Yasa and Depo Center, organizing competency improvement training, recruitment of testing staff based on educational background;

2) In the field of infrastructure and facilities, the addition of supporting infrastructure (testing equipment room, place for testing staff, room for issuance of feasibility certificates) and the addition of facilities in the form of testing equipment (testing instruments / computers, issuance certificate, calibration) and administrative testing and certification equipment new IT-based feasibility;

3) In the budget sector a larger budget is allocated to support human resource capacity building and infrastructure and facilities; and in the field of operational management regulation

4) Revised SOP for testing is immediately made.

In the implementation process, integration of all testing activities should be carried out in one work unit (directorate), better human resource development through training and workshop activities, certification of testing personnel, implementation of more intense, disciplined and timely feasibility testing, use of testing tools more optimally, the use of a budget that is more targeted and in accordance with the planning and allocation, and the use of SOPs as a guideline for testing activities.

Should make a strategic effort of feasibility testing to support the operational performance of the railroad through the provision of a test place together with the place of treatment; addition of testing equipment; addition of HR testing and administration personnel in each Yasa Hall and Depo; improving the quality of human resources; the addition of up-to-date technology; adequate budget; making /
revising SOP regulations according to field conditions; simplify the process of conducting testing and certification effectively and efficiently; conduct supervision and evaluation; private submission as a government-accredited testing institution / agency; supporting facilities and infrastructure have information technology and systems online.

Further research needs to be done with a quantitative approach by using path analysis or structural equation modeling (SEM) to determine the effect of HR input aspects of testing personnel (quantity of testing personnel and quantity of testing facilities) on aspects of the process (performance of testers) and aspects of output (number of feasibility certificates generated).

References

Law Number 23 of 2007 concerning Railways.
RI Government Regulation No. 56 of 2009 concerning the implementation of railways.